Oracle Database 10g: SQL
Fundamentals Il

Electronic Presentation

D17111GC20
Edition 2.0
May 2006
D46264

ORACLE

Authors

Chaitanya K oratamaddi
Priya Vennapusa

Technical Contributors
and Reviewers

Claire Bennett
Brian Boxx
Zarko Cedjas
Laurent Dereac
Nancy Greenberg
Angelika Krupp
Malika Marghadi
Priya Nathan
Bryan Roberts
Lata Shivaprasad
Naoko Susuki

Editors

Nita Pavitran

Atanu Raychaudhuri
Graphic Designer
Sanjeev Sharma

Publishers

Sujatha Nagendra
Sheryl Domingue

Copyright © 2006, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and other intellectual
property laws. You may copy and print this document solely for your own use in an Oracle training
course. The document may not be modified or altered in any way. Except where your use constitutes
"fair use" under copyright law, you may not use, share, download, upload, copy, print, display,
perform, reproduce, publish, license, post, transmit, or distribute this document in whole or in part
without the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you find any
problems in the document, please report them in writing to: Oracle University, 500 Oracle Parkway,
Redwood Shores, California 94065 USA. This document is not warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using the
documentation on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government's rights to use, modify, reproduce, release, perform, display, or disclose these
training materials are restricted by the terms of the applicable Oracle license agreement and/or the
applicable U.S. Government contract.

Trademark Notice

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or
its affiliates. Other names may be trademarks of their respective owners.

Introduction

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

 Listthe course objectives
« Describe the sample tables used in the course

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do
the following:

« Use advanced SQL data retrieval techniques to
retrieve data from database tables

 Apply advanced techniques in a practice that
simulates real life

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Course Overview

In this course, you use advanced SQL data retrieval
techniques such as:

 Datetime functions

e ROLLUP, CUBE operators, and GROUPING SETS
 Hierarchical queries

« Correlated subqueries

 Multitable inserts

e Merge Operation

 External tables

 Regular expression usage

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Course Application

o

EMPLOYEES DEPARTMENTS LOCATIONS
REGIONS COUNTRIES
ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned the following:
e The course objectives
« The sample tables used in the course

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Controlling User Access

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

« Differentiate system privileges from object
privileges

 Grant privileges on tables

 View privileges in the data dictionary

« Grantroles

 Distinguish between privileges and roles

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Controlling User Access

Database '.=‘ g '

administrator . .

Username and password
Privileges

Users

P
S

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Privileges

« Database security:
— System security
— Data security
« System privileges: Gaining access to the database

 Object privileges: Manipulating the content of the
database objects

« Schemas: Collection of objects such as tables,
views, and sequences

ORACLE

Copyright © 2006, Oracle. All rights reserved.

System Privileges

« More than 100 privileges are available.
« The database administrator has high-level system
privileges for tasks such as:
— Creating new users
— Removing users
— Removing tables
— Backing up tables

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating Users

The DBA creates users with the CREATE USER
statement.

CREATE USER user
IDENTIFIED BY password;

CREATE USER USER1
IDENTIFIED BY USER1;
User created.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

User System Privileges

 After auser is created, the DBA can grant specific
system privileges to that user.

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

« An application developer, for example, may have
the following system privileges:
— CREATE SESSION
— CREATE TABLE
— CREATE SEQUENCE
— CREATE VIEW
— CREATE PROCEDURE

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Granting System Privileges

The DBA can grant specific system privileges to a
user.

GRANT create session, create table,
create sequence, create view

TO scott;

Grant succeeded.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

What Is a Role?

20 A0 &F Ab A Al

';:r ';;b ';:r ':‘r ';;b ';:r

I B == § I
I I W Jusers | I I

)
Privileges
Allocating privileges Allocating privileges
without arole with arole

ORACLE
Copyright © 2006, Oracle. All rights reserved.

Creating and Granting Privileges to a Role

e Create arole:

CREATE ROLE manager;
Role created.

« Grant privileges to arole:

GRANT create table, create view
TO manager;
Grant succeeded.

e Grant aroleto users:

GRANT manager TO BELL, KOCHHAR;
Grant succeeded.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Changing Your Password

« The DBA creates your user account and initializes
your password.

* You can change your password by using the
ALTER USER Statement.

ALTER USER HR
IDENTIFIED BY employ;
User altered.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Object Privileges

Object

Privilege Table | View | Sequence |Procedure
ALTER v v

DELETE v v

EXECUTE v
INDEX v

INSERT v v

REFERENCES v

SELECT v v v

UPDATE v v

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Object Privileges

 Object privileges vary from object to object.
« An owner has all the privileges on the object.

« An owner can give specific privileges on that
owner’s object.

GRANT object priv [(columns)]
ON object

TO {user|role|PUBLIC}
[WITH GRANT OPTION] ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Granting Object Privileges

« Grant query privileges on the EMPLOYEES table:

GRANT select

ON employees

TO sue, rich;
Grant succeeded.

 Grant privileges to update specific columns to
users and roles:

GRANT update (department name, location id)
ON departments

TO scott, manager;

Grant succeeded.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Passing On Your Privileges

« Give a user authority to pass along privileges:

GRANT select, insert
ON departments

TO scott

WITH GRANT OPTION;
Grant succeeded.

 Allow all users on the system to query data from
Alice’s DEPARTMENTS table:

GRANT select

ON alice.departments
TO PUBLIC;

Grant succeeded.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Confirming Privileges Granted

Data Dictionary View Description

ROLE SYS PRIVS System privileges granted to roles
ROLE TAB PRIVS Table privileges granted to roles
USER_ROLE PRIVS Roles accessible by the user

USER TAB PRIVS MADE |Object privileges granted on the user’s
objects

USER TAB PRIVS RECD |Object privileges granted to the user

USER COL PRIVS MADE |Object privileges granted on the
columns of the user’s objects

USER COL PRIVS RECD |Object privileges granted to the user on
specific columns

USER SYS PRIVS System privileges granted to the user

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Revoking Object Privileges

e You use the REVOKE statement to revoke
privileges granted to other users.

 Privileges granted to others through the WITH
GRANT OPTION clause are also revoked.

REVOKE {privilege [, privilege...]|ALL}
ON object

FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS] ;

ORACLE
Copyright © 2006, Oracle. All rights reserved.

Revoking Object Privileges

As user Alice, revoke the SELECT and INSERT
privileges given to user Scott on the DEPARTMENTS

table.

REVOKE select, insert
ON departments
FROM scott;

Revoke succeeded.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned about
statements that control access to the database and
database objects.

Statement Action

CREATE USER Creates a user (usually performed by a DBA)

GRANT Gives other users privileges to access the
objects

CREATE ROLE Creates a collection of privileges (usually
performed by a DBA)

ALTER USER Changes a user’s password

REVOKE Removes privileges on an object from users

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 1: Overview

This practice covers the following topics:
 Granting other users privileges to your table

 Modifying another user’s table through the
privileges granted to you

e« Creating a synonym
 Querying the data dictionary views related to
privileges

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Managing Schema Objects

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

e Add constraints
e Create indexes

e Create indexes using the CREATE TABLE
statement

 Creating function-based indexes
« Drop columns and set column UNUSED
 Perform FLASHBACK operations

e Create and use external tables

ORACLE

Copyright © 2006, Oracle. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to:
e Add anew column
 Modify an existing column

e Define a default value for the new column
e Drop acolumn

ORACLE
Copyright © 2006, Oracle. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or
drop columns:
ALTER TABLE table

ADD (column datatype [DEFAULT expr]
[, column datatypel...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]
[, column datatypel...);

ALTER TABLE table
DROP (column) ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Adding a Column

e You use the ADD clause to add columns:

ALTER TABLE dept80
ADD (job_id VARCHAR2 (9)) ;
Table altered.

e The new column becomes the last column:

EMPLOYEE_ID LAST NAME ANNSAL HIRE_DATE JOB_ID
145 Russell 14000 01-0CT-96
146 Parners 13500 05-JAMN-97
147 Errazunz 12000 10-MAR-SY
148 Cambrault 11000 15-0CT-99
149 lotkey 10500 29-JAMN-00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Modifying a Column

* You can change acolumn’s data type, size, and
default value.

ALTER TABLE dept80
MODIFY (last name VARCHAR2 (30));
Table altered.

« A change to the default value affects only
subsequent insertions to the table.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns you no
longer need from the table:

ALTER TABLE dept80
DROP COLUMN job_id;
Table altered.

EMPLOYEE_ID LAST NAME ANNSAL HIRE_DATE
145 Russell 14000 01-0CT-96
146 Partners 13500 05-JAN-97
147 Errazurz 12000 10-MAR-SY
148 Cambrault 11000 15-0CT-39
149 Zotkey 10500 29-JAN-00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

SET UNUSED Option

* You use the SET UNUSED option to mark one or
more columns as unused.

* You use the DROP UNUSED COLUMNS option to
remove the columns that are marked as unused.

ALTER TABLE <table name>

SET UNUSED|(<column name>) ;

OR

ALTER TABLE <table name>

SET UNUSED| COLUMN <column name>;

ALTER TABLE <table name>
DROP TUNUSED COLUMNS;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Adding a Constraint Syntax

Use the ALTER TABLE Sstatement to:

« Add or drop a constraint, but not modify its
structure

e Enable or disable constraints

« Add a NOT NULL constraint by using the MODIFY
clause

ALTER TABLE <table name>
ADD [CONSTRAINT <constraint name>]
type (<column name>) ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Adding a Constraint

Add a FOREIGN KEY constraint to the EMP2 table

Indicating that a manager must already exist as a valid
employee in the EMP2 table.

ALTER TABLE emp2
modify| employee id Primary Key;
Table altered.

ALTER TABLE emp2

ADD| CONSTRAINT emp mgr fk
FOREIGN KEY (manager id)
REFERENCES emp2 (employee id) ;

Table altered.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

ON DELETE CASCADE

Delete child rows when a parent key is deleted:

ALTER TABLE Emp2 ADD CONSTRAINT emp dt fk
FOREIGN KEY (Department id)

REFERENCES departments ON DELETE CASCADE) ;
Table altered.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Deferring Constraints

Constraints can have the following attributes:
e DEFERRABLE Of NOT DEFERRABLE

e INITTIALLY DEFERRED Or INITIALLY TMMEDIATE

ALTER TABLE deptz Deferring constraint on
. creation

ADD CONSTRAINT dept2 id pk

PRIMARY KEY (department id)

DEFERRABLE INITIALLY DEFERRED

SET CONSTRAINTS dept2 id pk |IMMEDIATE | SN2r9indaspecific

constraint attribute

ALTER SESSION Changing all constraints for a
SET CONSTRAINTS=|IMMEDIATE Session

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Dropping a Constraint

« Remove the manager constraint from the EMP2
table:

ALTER TABLE emp2
DROP CONSTRAINT emp mgr fk;
Table altered.

* Remove the PRIMARY KEY constraint on the DEPT2
table and drop the associated FOREIGN KEY
constraint on the EMP2 .DEPARTMENT ID column:

ALTER TABLE dept2
DROP PRIMARY KEY CASCADE;
Table altered.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Disabling Constraints

 EXxecute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.

 Apply the CASCADE option to disable dependent
Integrity constraints.

ALTER TABLE emp2
DISABLE CONSTRAINT emp dt fk;

Table altered.

ORACLE
Copyright © 2006, Oracle. All rights reserved.

Enabling Constraints

« Activate an integrity constraint currently disabled
In the table definition by using the ENABLE clause.

ALTER TABLE emp 2
ENABLE CONSTRAINT emp_dt_fk;
Table altered.

e A UNIQUE index is automatically created if you
enable a UNIQUE key or a PRIMARY KEY constraint.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Cascading Constraints

e The CASCADE CONSTRAINTS clause is used along
with the DROP COLUMN clause.
e The CASCADE CONSTRAINTS clause drops all

referential integrity constraints that refer to the
primary and unique keys defined on the dropped
columns.

e The CASCADE CONSTRAINTS clause also drops all

multicolumn constraints defined on the dropped
columns.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Cascading Constraints

Example:

ALTER TABLE emp2

DROP COLUMN employee id CASCADE CONSTRAINTS;
Table altered.

ALTER TABLE testl

DROP (pk, fk, coll) CASCADE CONSTRAINTS;
Table altered.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Overview of Indexes

Indexes are created:
 Automatically
— PRIMARY KEY creation
— UNIQUE KEY creation

« Manually
— CREATE INDEX statement
— CREATE TABLE statement

ORACLE

Copyright © 2006, Oracle. All rights reserved.

CREATE INDEX with the CREATE TABLE
Statement

CREATE TABLE NEW EMP

(employee id NUMBER (6)

PRIMARY KEY USING INDEX
(CREATE INDEX emp id idx ON
NEW EMP (employee id)),
first name VARCHAR2(20),
last name VARCHAR2 (25)) ;

Table created.

SELECT INDEX NAME, TABLE NAME
FROM USER INDEXES
WHERE TABLE NAME = 'NEW EMP';

| INDEX_NAME | TABLE_NAME
[EMP_ID_ICi INEYY_EMP

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Function-Based Indexes

« A function-based index is based on expressions.

« The index expression is built from table columns,
constants, SQL functions, and user-defined
functions.

CREATE INDEX upper dept name idx
ON dept2 (UPPER (department name)) ;

Index created.

SELECT *
FROM dept2
WHERE UPPER (department name) = 'SALES';

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Removing an Index

« Remove an index from the data dictionary by
using the DROP INDEX command:

DROP INDEX index;

« Remove the UPPER DEPT NAME IDX index from
the data dictionary:

DROP INDEX upper dept name idx;
Index dropped.

« To drop anindex, you must be the owner of the
Index or have the DROP ANY INDEX privilege:

ORACLE

Copyright © 2006, Oracle. All rights reserved.

DROP TABLE ... PURGE

DROP TABLE dept80 |PURGE;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

FLASHBACK TABLE Statement

 Repair tool for accidental table modifications
— Restores atable to an earlier point in time
— Benefits: Ease of use, availability, fast execution
— Performed in place

e Syntax:

FLASHBACK TABLE [schema.] tablel,

[schema.]table]...

TO { TIMESTAMP | SCN } expr

[{ ENABLE | DISABLE } TRIGGERS];

ORACLE

Copyright © 2006, Oracle. All rights reserved.

FLASHBACK TABLE Statement

DROP TABLE emp2;
Table dropped

SELECT original name, operation, droptime,
FROM recyclebin;

ORIGINAL_NAME OPERATION DROPTIME
EmMP2 DROP 2004-03-03:07:57:11

FLASHBACK TABLE emp2 TO BEFORE DROP;
Flashback complete

ORACLE

Copyright © 2006, Oracle. All rights reserved.

External Tables

Copyright © 2006, Oracle. All rights reserved.

ORACLE

Creating a Directory for the External Table

Create a DIRECTORY object that corresponds to the

directory on the file system where the external data
source resides.

CREATE OR REPLACE DIRECTORY emp_dir
AS '/../emp dir';

GRANT READ ON DIRECTORY emp dir TO hr;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating an External Table

CREATE TABLE <table name>
(<col name> <datatype>, ..)
ORGANIZATION EXTERNAL
(TYPE <access driver type>
DEFAULT DIRECTORY <directory name>
ACCESS PARAMETERS
(..))
LOCATION ('<location specifier>'))
REJECT LIMIT [0 | <number> | UNLIMITED];

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating an External Table by Using
ORACLE LOADER

CREATE TABLE oldemp (
fname char(25), lname CHAR(25))
ORGANIZATION EXTERNAL
(TYPE ORACLE LOADER
DEFAULT DIRECTORY emp dir
ACCESS PARAMETERS
(RECORDS DELIMITED BY NEWLINE
NOBADFILE
NOLOGFILE
FIELDS TERMINATED BY ','
(fname POSITION (1:20) CHAR,
lname POSITION (22:41) CHAR))
LOCATION ('emp.dat'))
PARALLEL 5
REJECT LIMIT 200;
Table created.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Querying External Tables

FNAME LNAME
Condtarin Wills
Hany Pacino
Manisha Tajlor
SELECT &5 Hanzan Sutheland
FROM ol demp Metthiag MacGraw
Hatk Hannah
-~
222
222
) 222
=
J)LDEMP
emp .dat

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
 Add constraints

 Create indexes

« Create a primary key constraint using an index
 Create indexes using the CREATE TABLE Statement
 Create function-based indexes

« Drop columns and set column UNUSED

 Perform FLASHBACK operations

e Create and use external tables

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Manipulating Large Data Sets

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

« Manipulate data using subqueries

Describe the features of multitable INSERTs
Use the following types of multitable INSERTs
— Unconditional INSERT

— Pivoting INSERT

— Conditional ALL INSERT

— Conditional FIRST INSERT

Merge rows in atable

Track the changes to data over a period of time

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Subqueries to Manipulate Data

You can use subqueries in data manipulation language
(DML) statements to:

« Copy data from one table to another
 Retrieve data from an inline view

« Update data in one table based on the values of
another table

e Deleterows from one table based on rows in a
another table

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Copying Rows from Another Table

 Write your INSERT statement with a subquery.

INSERT INTO sales reps(id, name, salary, commission pct)
SELECT employee id, last name, salary, commission pct
FROM employees

WHERE job id LIKE 'S%REP%';

33 rows created.

e Do not use the VALUES clause.

« Match the number of columns in the INSERT
clause with that in the subquery.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

INSERT INTO
(SELECT employee id, last name,
email, hire date, job id, salary,
department id
FROM empl3
WHERE department id = 50)
VALUES (99999, 'Taylor', 'DTAYLOR',
TO DATE('07-JUN-99', 'DD-MON-RR'),
'ST CLERK', 5000, 50);

1l row created.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Inserting Using a Subquery as a Target

Verify the results.

SELECT employee id, last name, email, hire date,
job id, salary, department id

FROM empl3

WHERE department id = 50;

EMPLOYEE_ID LAST NAME EMAIL HIRE_DATE JOB_ID SALARY DEPARTMENT_ID
120 WWeiss MWEISS 18-JUL-SE ST_MAN 5000 50
121 Fripp AFRIPP 10-APR-37 ST_MAN 8200 50
122 Kaufling PRAUFLIN D1-MAY-95 ST_MAN 7900 50
193 Everett BEVERETT D3-MARS7 SH_CLERK 3900 50
194 McCain SMCCAIN 01-JUL-98 SH_CLERK 3200 50
195 Jones VIOMES 17-MAR-99 SH_CLERK 2800 50
196 Walsh AWALSH 24-APRO3 SH_CLERK 3100 50
197 Feeney KFEEMEY 23-MAY-98 SH_CLERK 3000 50
193 OCannell DOCOMMEL 21-JUM-83 SH_CLERK 2600 50
199 Grant DERANT 13-JAN-00 SH_CLERK 2600 50

| 95995 Taylor DIAVLOR 07-JUN-S3 ST _CLERK 5000 50|

46 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Retrieving Data with a Subquery as Source

SELECT a.last name, a.salary,

a.department id, b.salavg
FROM employees a JOIN|(SELECT department id,
AVG (salary) salavg
FROM employees
GROUP BY department id) b
ON a.department id = b.department id

AND a.salary > b.salavg;
LAST _NAME SALARY DEPARTMENT _ID SALAVG

King 24000 a0 193333333
Hunold 9000 B0 5760
Ernst BO00 B0 A760
Greenbery 12000 100 BE00
F aviet 9000 100 AR00
Raphaely 11000 30 4150
Weiss B000 Al 3475 55556
Fripp 5200 A0 3475 55556

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Updating Two Columns with a Subquery

Update the job and salary of employee 114 to match
the job of employee 205 and the salary of employee

168:
UPDATE empl3
SET job id =| (SELECT job id
FROM employees
WHERE employee id = 205),
salary =| (SELECT salary
FROM employees
WHERE employee id = 168)
WHERE employee id = 114;
1 row updated.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Updating Rows Based
on Another Table

Use subqueries in UPDATE statements to update rows
In a table based on values from another table:

UPDATE |empl3
SET department id = (SELECT department id
FROM |employees
WHERE employee id = 100)
WHERE job id = (SELECT job id
FROM |employees
WHERE employee id = 200);

1 row updated.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Deleting Rows Based
on Another Table

Use subgueries in DELETE Sstatements to remove rows
from a table based on values from another table:

DELETE FROM empl3

WHERE department id =
(SELECT department id

FROM departments
WHERE department name
LIKE '%Public%');

1 row deleted.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using the WITH CHECK OPTION Keyword on
DML Statements

« A subquery is used to identify the table and
columns of the DML statement.

e The WITH CHECK OPTION keyword prohibits you
from changing rows that are not in the subquery.

INSERT INTO (SELECT employee id, last name, email,
hire date, job id, salary
FROM empl3
WHERE department id = 50
WITH CHECK OPTION)
VALUES (99998, 'Smith', 'JSMITH',
TO DATE('07-JUN-99', 'DD-MON-RR'),
'ST CLERK', 5000);
INSERT INTO
%*
ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Overview of the Explicit Default Feature

 With the explicit default feature, you can use the
DEFAULT keyword as a column value where the

column default is desired.

« The addition of this feature is for compliance with
the SQL:1999 standard.

e This allows the user to control where and when
the default value should be applied to data.

 Explicit defaults can be used in INSERT and
UPDATE Statements.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Explicit Default Values

e DEFAULT with INSERT:;:

INSERT INTO deptm3
(department id, department name, manager id)
VALUES (300, 'Engineering', DEFAULT) ;

e DEFAULT with UPDATE:

UPDATE deptm3
SET manager id = [DEFAULT
WHERE department id = 10;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

#”’
|i‘
e
Table a
INSERT ALL P
INTO table a |VALUES (..,..,...) 77
INTO table b |VALUES(...,...,...) |f’
INTO table c |[VALUES(..,..,..)
SELECT ..
|
FROM sourcetab /.‘ Table b
WHERE ..; a e_’
#”’
I /“
Table c

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Overview of Multitable INSERT Statements

e The INSERT..SELECT statement can be used to
Insert rows into multiple tables as part of a single
DML statement.

 Multitable INSERT statements can be used in data
warehousing systems to transfer data from one or
more operational sources to a set of target tables.

« They provide significant performance
Improvement over:

— Single DML versus multiple INSERT...SELECT
statements

— Single DML versus a procedure to perform multiple
Inserts by using the IF...THEN syntax

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Types of Multitable INSERT Statements

The different types of multitable INSERT statements
are:

 Unconditional INSERT

« Conditional ALL INSERT

« Conditional FIRST INSERT

 Pivoting INSERT

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Multitable INSERT Statements

e Syntax:

INSERT [ALL] [conditional insert clause]
[insert into clause values clause] (subquery)

e conditional insert clause:

[ALL] [FIRST]
[WHEN condition THEN] [insert into clause values clause]
[ELSE] [insert into clause values clause]

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Unconditional INSERT ALL

 Select the EMPLOYEE ID, HIRE DATE, SALARY, and
MANAGER ID values from the EMPLOYEES table for
those employees whose EMPLOYEE ID is greater

than 200.

* Insert these values into the SAL HISTORY and
MGR HISTORY tables by using a multitable INSERT.

INSERT | ALL
INTO sal history VALUES (EMPID, HIREDATE, SAL)

INTO mgr history VALUES (EMPID, MGR, SAL)
SELECT employee id EMPID, hire date HIREDATE,
salary SAL, manager id MGR
FROM employees
WHERE employee id > 200;
12 rows created.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Conditional INSERT ALL

 Select the EMPLOYEE ID, HIRE DATE, SALARY, and
MANAGER ID values from the EMPLOYEES table for
those employees whose EMPLOYEE ID is greater

than 200.

 |If the sALARY is greater than $10,000, insert these
values into the SAL HISTORY table using a
conditional multitable INSERT statement.

« If the MANAGER ID is greater than 200, insert these
values into the MGR HISTORY table using a
conditional multitable INSERT statement.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Conditional INSERT ALL

INSERT ALL

WHEN|SAL > 10000 |THEN
INTO sal history VALUES (EMPID,HIREDATE, SAL)

WHEN [MGR > 200 THEN
INTO mgr history VALUES (EMPID,MGR, SAL)
SELECT employee id EMPID,hire date HIREDATE,

salary SAL, manager id MGR

FROM employees -
WHERE employee id > 200;

4 rows created. B

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Conditional INSERT FIRST

e Select the DEPARTMENT ID, SUM(SALARY), and
MAX (HIRE DATE)from the EMPLOYEES table.

 If the SUM(SALARY) is greater than $25,000, then
Insert these values into the SPECIAL SAL by
using a conditional FIRST multitable INSERT.

« If the first WHEN clause evaluates to true, then the
subsequent WHEN clauses for this row should be

skipped.

 For the rows that do not satisfy the first WHEN
condition, insert into the HIREDATE HISTORY 00,
HIREDATE HISTORY 99, of HIREDATE HISTORY
tables, based on the value in the HIRE DATE
column using a conditional multitable INSERT.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Conditional INSERT FIRST

INSERT| FIRST
WHEN SAL > 25000 THEN
INTO special sal VALUES (DEPTID, SAL)
WHEN HIREDATE like ('%00%') THEN
INTO hiredate history 00 VALUES (DEPTID,HIREDATE)
WHEN HIREDATE like ('%99%') THEN

INTO hiredate history 99 VALUES (DEPTID, HIREDATE)
ELSE
INTO hiredate history VALUES (DEPTID, HIREDATE)
SELECT department id DEPTID, SUM(salary) SAL,

MAX (hire date) HIREDATE

FROM employees
GROUP BY department id;
12 rows created.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Pivoting INSERT

e Suppose you receive a set of sales records from a

nonrelational database table,
SALES SOURCE DATA, Iin the following format:

EMPLOYEE ID, WEEK ID, SALES MON, SALES TUE,
SALES WED, SALES THUR, SALES FRI

e You want to store these records in the
SALES INFO table in a more typical relational
format:

EMPLOYEE ID, WEEK, SALES

 Using a pivoting INSERT, convert the set of sales

records from the nonrelational database table to
relational format.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Pivoting INSERT

INSERT ALL
INTO| sales info|VALUES (employee id,week id,sales MON)
INTO| sales info|VALUES (employee id,week id,sales TUE)
INTO| sales info|VALUES (employee id,week id,sales WED)
INTO| sales info|VALUES (employee id,week id,sales THUR)
INTO| sales info|VALUES (employee id,week id, sales FRI)
SELECT EMPLOYEE ID, week id, sales MON, sales TUE,
sales WED, sales THUR,sales FRI

FROM sales source data;
5 rows created.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

MERGE Statement

 Provides the ability to conditionally update or
Insert data into a database table

« Performs an UPDATE if the row exists, and an
INSERT if it is a new row:
— Avoids separate updates
— Increases performance and ease of use
— Is useful in data warehousing applications

ORACLE

Copyright © 2006, Oracle. All rights reserved.

MERGE Statement Syntax

You can conditionally insert or update rows in a table
by using the MERGE statement.

MERGE INTO table name table alias
USING (table/view|sub query) alias
ON (join condition)

WHEN MATCHED THEN
UPDATE SET
coll = col vall,
col2 = col2 val

WHEN NOT MATCHED THEN
INSERT (column list)
VALUES (column values) ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Merging Rows

Insert or update rows in the EMPL3 table to match the
EMPLOYEES table.

MERGE INTO empl3 c
~ USING employees e
ON (c.employee id = e.employee id)
WHEN MATCHED THEN
UPDATE SET
c.first name
c.last name

e.first name,
e.last name,

c.department id
WHEN NOT MATCHED EHEEJ
INSERT VALUES|(e.employee id, e.first name, e.last name,
e.email, e.phone number, e.hire date, e.job id,
e.salary, e.commission pct, e.manager id,
e.department id);

ORACLE

Copyright © 2006, Oracle. All rights reserved.

e.department id

Merging Rows

TRUNCATE TABLE empl3;

SELECT *
FROM empl3;
no rows selected

MERGE INTO empl3 c

USING employees e

ON (c.employee id = e.employee id)
WHEN MATCHED THEN

UPDATE SET
WHEN NOT MATCHED THEN

INSERT VALUES...;

SELECT *
FROM empl3;

107 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

SELECT

Tracking Changes in Data

A

Versions of retrieved rows

Copyright © 2006, Oracle. All rights reserved.

ORACLE

Example of the Flashback Version Query

SELECT salary FROM employees3 (::)
WHERE employee id = 107;

SALARY
4200

UPDATE employees3 SET salary = salary * 1.30

WHERE employee id = 107; <::>

|COMMIT;|

SELECT salary FROM employees3
VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE

WHERE employee id = 107;

SALARY
5460
4200

ORACLE

Copyright © 2006, Oracle. All rights reserved.

VERSIONS BETWEEN Clause

SELECT versions starttime "START DATE",
versions endtime "END DATE",
salary

FROM employees

VERSIONS BETWEEN SCN MINVALUE

AND MAXVALUE

WHERE last name = 'Lorentz';
START_DATE END_DATE SALARY
13-FEE-04 11.16.41 A 5450
13-FEE-04 11.16.41 A 4200

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
« Use DML statements and control transactions
 Describe the features of multitable INSERTs
 Usethe following types of multitable INSERTs:
— Unconditional INSERT
— Pivoting INSERT
— Conditional ALL INSERT
— Conditional FIRST INSERT
« Mergerows in atable
« Manipulate data by using subqueries
« Track the changes to data over a period of time

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
« Performing multitable INSERTS

 Performing MERGE operations
e Tracking row versions

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the following topics:
« Altering tables

« Adding columns

« Dropping columns

 Creating indexes

 Creating external tables

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Generating Reports by Grouping
Related Data

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

« Use the ROLLUP operation to produce
subtotal values

« Usethe CUBE operation to produce cross-
tabulation values

« Use the GROUPING function to identify the row
values created by ROLLUP or CUBE

« Use GROUPING SETS to produce a single result set

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Review of Group Functions

« Group functions operate on sets of rows to give
one result per group.

SELECT [column,]| group function (column) .
FROM table

[WHERE condition]

[GROUP BY group by expression]

[ORDER BY column] ;

« Example:

SELECT AVG(salary), STDDEV(salary),

COUNT (commission pct) ,MAX (hire date)
FROM employees
WHERE job id LIKE 'SA%';

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Review of the GROUP BY Clause

e Syntax:
SELECT [column,] group function(column). . .
FROM table
[WHERE condition]

[GROUP BY group by expression]
[ORDER BY column] ;
« Example:

SELECT department id, job id, SUM(salary),
COUNT (employee id)

FROM employees
GROUP BY department id, job id|;

ORACLE
Copyright © 2006, Oracle. All rights reserved.

Review of the HAVING Clause

« Use the HAVING clause to specify which groups
are to be displayed.

 You further restrict the groups on the basis of a
limiting condition.

SELECT [column,] group function(column)...
FROM table
[WHERE condition]
[GROUP BY group by expression]
LEHAVING having expression]
ORDER BY column] ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

GROUP BY with ROLLUP and
CUBE Operators

« Use ROLLUP Or CUBE With GROUP BY to produce
superaggregate rows by cross-referencing
columns.

e ROLLUP grouping produces a result set containing
the regular grouped rows and the subtotal values.

e CUBE grouping produces a result set containing
the rows from ROLLUP and cross-tabulation rows.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

ROLLUP Operator

e ROLLUP IS an extension to the GROUP BY clause.

« Use the ROLLUP operation to produce cumulative
aggregates, such as subtotals.

SELECT [column,] group function (column).
FROM table

[WHERE condition]

[GROUP BY [ROLLUP] | group by expressionl]
[HAVING having expression];

[ORDER BY column] ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

ROLLUP Operator: Example

SELECT department id, job id, SUM(salary)
FROM employees

WHERE department id < 60

GROUP BY ROLLUP (department id, job id);

DEPARTMENT ID JOB 1D SUM{SALARY)
I 10 AD ASST 4400

10 4400
20 MK_MAN 13000
20 MK_REP 5000
20 15000
30 PLU_MARN 11000
30 PU_CLERK 13900
30 24900
40 HR_REP 5500
| 40 5500 |
50 ST_MARN 35400
50 SH_CLERK 54300
50 ST _CLERK 55700

a0 156400
211200

15 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

CUBE Operator

e CUBE IS an extension to the GROUP BY clause.

* You can use the CUBE operator to produce cross-
tabulation values with a single SELECT statement.

SELECT [column,] group function(column)...
FROM table

[WHERE condition]

[GROUP BY [[CUBE] |group by expression]

[HAVING having expression]

[ORDER BY column] ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

CUBE Operator: Example

SELECT department id, job id, SUM(salary)
FROM employees
WHERE department id < 60
|GROUP BY CUBE (department id, job_id)l;
DEPARTMENT_ID JOB_ID SUM{SALARY)
| 211200
HR_REF k500
Mk MAN 13000
hik_REF K000
PU_MAM 11000
ST_MAN 36400
AD_ASET 4400
PU_CLERK 13500
SH_CLERK B4300
ST_CLERK 55700
18} 44000
[10_AD ASST 4400 |
20 15000
200 MK_MAN 13000
20 MK_REF E000
[&l 23000 |
30 PU_RAN 11000

ORACLE

Copyright © 2006, Oracle. All rights reserved.

GROUPING Function

The GROUPING function:
e Is used with either the CUBE or ROLLUP operator

 Is used to find the groups forming the subtotal in
arow

 Is used to differentiate stored NULL values from
NULL values created by ROLLUP or CUBE

e ReturnsQOorl

SELECT [column,] group function(column) .. ,
GROUPING (expr)

FROM table

[WHERE condition]

[GROUP BY [ROLLUP] [CUBE] group by expression]
[HAVING having expression]
[ORDER BY column];

ORACLE

Copyright © 2006, Oracle. All rights reserved.

GROUPING Function: Example

SELECT department id DEPTID, job id JOB,
SUM (salary),

GROUPING (department id) GRP_DEPT,
GROUPING (job id) GRP JOB

FROM employees B ;

WHERE department id < 50

GROUP BY ROLLUP (department id, job id);

DEPTID JOB SUM{SALARY) GRP_DEPT GRP_JOB

@—> 10 AD_ASST 4400 0 0
10 4400 0 1@

200 Mk_MAN 13000 0 0

20 MK_REP &O00 0 0

20 19000 0 1

30 PLU_kAAN 11000 0 0

J0 PU_CLERK 13300 0 0

30 24900 0 1

40 HRE_REP B500 0 0

40 B500 0 1

4800 1 1

11 roves selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

GROUPING SETS

e The GROUPING SETS syntax is used to define
multiple groupings in the same query.
« All groupings specified in the GROUPING SETS

clause are computed and the results of individual
groupings are combined with a UNION ALL

operation.
« Grouping set efficiency:
— Only one pass over the base table is required.

— There is no need to write complex UNION
statements.

— The more elements GROUPING SETS has, the greater
Is the performance benefit.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

GROUPING SETS: Example

SELECT department id, job id,
manager id,avg(salary)
FROM employees
GROUP BY | GROUPING SETS
((department id,job id), (job id,manager id)) ;

DEPARTMENT ID JOB ID MANAGER ID AVG(SALARY)
AD WP 100 17000
AC_MGR 101 12000 ‘—@
FI_MGR 101 12000
HR_REF 107 GO0
MK_MAN 100 13000
MK_REP 201 G000
PR_REF 101 10000
DEPARTMENT ID JOB ID MANAGER._ID AVG(SALARY)
100 FI_MGR 12000
100 FI_ACCOUNT 7920
110 AC_MGR 12000 <—@
TTU AL s UUIN ool
ORACLE

Copyright © 2006, Oracle. All rights reserved.

Composite Columns

e A composite column is a collection of columns
that are treated as a unit.

ROLLUP (a,|(b,)|, d)

« Use parentheses within the GROUP BY clause to
group columns, so that they are treated as a unit
while computing ROLLUP Oor CUBE operations.

« When used with ROLLUP or CUBE, composite

columns would require skipping aggregation
across certain levels.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Composite Columns: Example

SELECT department id, job id, manager id,
SUM (salary)
FROM employees
GROUP BY ROLLUP(department id, (job id, manager_id))l:

DEPARTMENT ID JOE ID MANAGER. 1D SUMISALARY)
SA_REP 149 70010
7000
10 AD_ASST 101 4400
10 4400
20 ME_PAN 100 13000
20 bl BEP 2001 ROO0 ::@
20 19000
100 FI_MGR 101 12000
100 FI_ACCOUNT 108 39600
i) ETe00 4_@
110 AC_ACCOUNT 205 8300

110 20300
ES1400 @
46 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Concatenated Groupings

« Concatenated groupings offer a concise way to
generate useful combinations of groupings.

« To specify concatenated grouping sets, you
separate multiple grouping sets, ROLLUP, and

CUBE operations with commas so that the Oracle
server combines them into a single GROUP BY

clause.

e Theresultis across-product of groupings from
each GROUPING SET.

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Concatenated Groupings: Example

SELECT department id, job id, manager id,
SUM (salary)

FROM employees

GROUP BY department id,

ROLLUP (job id),
CUBE (manager id)

e

DEPARTMENT _ID JOB_ID MANAGER_ID SUM{SALARY)
=4 REF 149 000
10 AD_ASST 101 4400
200 MK MAM 100 13000
20 mMEk_REP 201 BO00
90 AD WP 100 34000
20 AD PRES 24000
149 Fooo
Fooo
SA_REP 7000
10 AD_ASST 4400
110 101 12000
110 205 2300
110 20300

93 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use
the:

e ROLLUP operation to produce subtotal values
e CUBE operation to produce cross-tabulation values

e GROUPING function to identify the row values
created by ROLLUP Or CUBE
e GROUPING SETS syntax to define multiple
groupings in the same query
* GROUP BY clause to combine expressions in
various ways:
— Composite columns
— Concatenated grouping sets

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 4: Overview

This practice covers using:
e ROLLUP operators

 CUBE operators
e GROUPING functions
e GROUPING SETS

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Managing Data in Different Time Zones

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
use the following datetime functions:

e TZ OFFSET * CURRENT DATE
 FROM TZ e CURRENT TIMESTAMP
e TO TIMESTAMP ° LOCALTIMESTAMP

e TO TIMESTAMP TZ DBTIMEZONE

 TO YMINTERVAL SESSIONTIMEZONE

 TO DSINTERVAL e EXTRACT

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Time Zones

00:00 #02:00 +04:00 +0G:00 #08:00 +10:00 +12:00 +14:00 +16:00 +#18:00 +20:00 +22:00

monzon

-08:

+02:00

[Internat|onal

| Date Lrne-

01:00 =300 05:00 a7:00 =0u00 11:00 13:00 =15:00 17:00 te:00 =21:00 23:00

The image represents the time for
each time zone when Greenwich
timeis 12:00.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIME ZONE Session Parameter

TIME ZONE may be set to:
 An absolute offset

« Database time zone

e OSlocal time zone

* A named region

ALTER SESSION SET TIME ZONE '-05:00"';

ALTER SESSION SET TIME ZONE = dbtimezone;

ALTER SESSION SET TIME ZONE local;

ALTER SESSION SET TIME ZONE 'America/New York';

ORACLE

Copyright © 2006, Oracle. All rights reserved.

CURRENT DATE, CURRENT TIMESTAMP,
and LOCALTIMESTAMP

e CURRENT DATE:

— Returns the current date from the system
— Has a datatype of DATE

* CURRENT TIMESTAMP:

— Returns the current time stamp from the system
— Has a data type of TIMESTAMP WITH TIME ZONE

 LOCALTIMESTAMP.

— Returns the current time stamp from user session
— Has a datatype of TIMESTAMP

ORACLE

Copyright © 2006, Oracle. All rights reserved.

CURRENT DATE

Display the current date and time in the session’s time
zone.

ALTER SESSION
SET NLS DATE FORMAT = 'DD-MON-YYYY HH24:MI:SS';

ALTER SESSION SET TIME ZONE = '-5:0';
SELECT SESSIONTIMEZONE, CURRENT DATE FROM DUAL;

| SESSIONTIMEZONE | CURRENT_DATE
-05:00 03-0CT-2001 09:37:06
ALTER SESSION SET TIME ZONE = '-8:0';

SELECT SESSIONTIMEZONE, CURRENT DATE FROM DUAL;

| SESSIONTIMEZONE | CURRENT_DATE
-08:00 03-0CT-2001 06:38:07

ORACLE

Copyright © 2006, Oracle. All rights reserved.

CURRENT TIMESTAMP

Display the current date and fractional time in the
session’s time zone.

ALTER SESSION SET TIME ZONE = '-5:0';

SELECT SESSIONTIMEZONE, CURRENT TIMESTAMP
FROM DUAL;

| SESSIONTIMEZONE | CURRENT_TIMESTAMP
-05:00 03-0CT-01 09.40,59.000000 At -05:00
ALTER SESSION SET TIME ZONE = '-8:0';

SELECT SESSIONTIMEZONE, CURRENT TIMESTAMP
FROM DUAL;

| SESSIONTIMEZONE | CURRENT_TIMESTAMP
|—EIB:EIEI |EI3-DCT—EI1 0&.41.33.000000 Akt -05:.00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

LOCALTIMESTAMP

 Display the current date and time in the session’s
time zone in a value of the TIMESTAMP data type.

ALTER SESSION SET TIME ZONE = '-5:0';
SELECT CURRENT TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

| CURRENT_TIMESTAMP | LOCALTIMESTAMP
03-0CT-01 09.44.21.000000 AM -05:00 03-0CT-01 09.44.21.000000 An
ALTER SESSION SET TIME ZONE = '-8:0';

SELECT CURRENT TIMESTAMP, LOCALTIMESTAMP
FROM DUAL;

| CURRENT_TIMESTAMP | LOCAL TIMESTAMP
|EI3-CICT-EI1 0. 45.221.000001 AR -0F:00 |EI3-CICT-EI1 06, 45.21.000007 AR

e LOCALTIMESTAMP returns a TIMESTAMP value,
whereas CURRENT TIMESTAMP returns a
TIMESTAMP WITH TIME ZONE value.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

DBTIMEZONE and SESSIONTIMEZONE

 Display the value of the database time zone:

SELECT DBTIMEZONE FROM DUAL;

| DBTIME
-05:00

 Display the value of the session’s time zone:

SELECT SESSIONTIMEZONE FROM DUAL;

| SESSIONTIMEZONE
-08:00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP Data Type

« The TIMESTAMP data type is an extension of the
DATE data type.

e It stores the year, month, and day of the DATE data
type, plus hour, minute, and second values,
as well as the fractional second value.
e Variations in TIMESTAMP are:
— TIMESTAMP
[(fEractional seconds precision)]

— TIMESTAMP
[(fEractional seconds precision)]
WITH TIME ZONE

— TIMESTAMP

[(fEractional seconds precision)]
WITH LOCAL TIME ZONE

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP Data Types

Data Type Fields

TTMESTAMP Year, Mon_th, Day,_Hour, Minute,
Second with fractional seconds

TIMESTAMP WITH TIME Same as the TIMESTAMP data type;

ZONE also includes:

TIMEZONE HOUR, and
TIMEZONE MINUTE Of
TIMEZONE REGION

Same as the TIMESTAMP data type;

TIMESTAMP WITH LOCAL .) :
also includes a time zone offset in
TIME ZONE |tS Va'ue

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP Fields

Datetime Field Valid Values

YEAR —4712 to 9999 (excluding year 0)
MONTH Olto 12

DAY 01 to 31

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59.9(N) where 9(N) is precision
TIMEZONE HOUR —12to 14

TIMEZONE MINUTE 00 to 59

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Difference Between DATE and TIMESTAMP

-- when hire date is | |ALTER TABLE emp5
of type DATE MODIFY hire date TIMESTAMP;
SELECT hire date SELECT hire date
FROM emp5; FROM emp5;

HIRE_DATE HIRE_DATE
17-dUIr-57 17-JUM-87 12.00.00. 000000 20
=1-SERF-54 21-SEP-89 12.00.00.000000 A

135-1AM-95
O=-JdA0-20
271 -l AN -5
25-JUI-2
O5-F EB-9S

153-AAM-93 120000000000 AR
O=5-JAM-90 12.00.00.000000 Ak
21-RAAN-91 12.00.00.000000 Sk
25-JUM-97 12.00.00.000000 2.0

T_EEELEE 05-FEE-98 12.00.00.000000 A
1 FoALG.Gd O7-FEE-99 12.00.00.000000 A
1Bl S0 17-A05-94 12.00.00.000000 2
28-SEP-97 16-2105-94 12.00.00.000000 2
28-SEP-97 12.00.00.000000 &k

S0-=EF-97 12.00.00.000000 AW

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP WITH TIME ZONE Data Type

e TIMESTAMP WITH TIME ZONE IS a variant of
TIMESTAMP that includes atime zone
displacement in its value.

« Thetime zone displacement is the difference,

In hours and minutes, between local time and
UTC.

 ltis specified as:

TIMESTAMP [(fractional seconds precision)]
WITH TIME ZONE

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP WITH TIMEZONE: Example

CREATE TABLE web orders
(ord id number primary key,
order date TIMESTAMP WITH TIME ZONE) ;

INSERT INTO web orders values
(ord seq.nextval, current date);

SELECT * FROM web orders;

ORD_ID ORDER_DATE
100 09-FEB-O4 07.04.44. 000000 A -057:00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE

e TIMESTAMP WITH LOCAL TIME ZONE IS another
variant of TIMESTAMP that includes atime zone

displacement in its value.

e Data stored in the database is normalized to the
database time zone.

« Thetime zone displacement is not stored as part
of the column data.

e The Oracle database returns the data in the user’s
local session time zone.

e The TIMESTAMP WITH LOCAL TIME ZONE data type
IS specified as follows:

TIMESTAMP [(fractional seconds precision)]
WITH LOCAL TIME ZONE

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP WITH LOCAL TIMEZONE:
Example

CREATE TABLE shipping (delivery time TIMESTAMP WITH
LOCAL TIME ZONE) ;

INSERT INTO shipping VALUES (current timestamp + 2);

SELECT * FROM shipping:;

DELIVERY_TIME
11-FEB-D4 07.09.02.000000 AR

ALTER SESSION SET TIME ZONE = 'EUROPE/LONDON';
SELECT * FROM shipping;

DELIWERY_TIME
11-FEB-04 02.059.02.000000 P

ORACLE

Copyright © 2006, Oracle. All rights reserved.

INTERVAL Data Types

e INTERVAL datatypes are used to store the
difference between two datetime values.
e There are two classes of intervals:
— Year-month
— Day-time
« The precision of the interval is:
— The actual subset of fields that constitutes an

interval
— Specified in the interval qualifier

Data Type Fields

INTERVAL YEAR TO MONTH | Year, Month

INTERVAL DAY TO SECOND Days_, Hour, Minute, Second with
fractional seconds

ORACLE

Copyright © 2006, Oracle. All rights reserved.

INTERVAL Flelds

INTERVAL Field | Valid Values for Interval

YEAR Any positive or negative integer
MONTH 00to 11

DAY Any positive or negative integer
HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59.9(N) where 9(N) is precision

ORACLE

Copyright © 2006, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH Data Type

INTERVAL YEAR TO MONTH stores a period of time using
the YEAR and MONTH datetime fields.

INTERVAL YEAR [(year precision)] TO MONTH

For example:

1312-2"' assigned to INTERVAL YEAR(3) TO MONTH

Indicates an interval of 312 years and 2 months

1312-0"' assigned to INTERVAL YEAR(3) TO MONTH

Indicates 312 years and 0 months

'0-3' assigned to INTERVAL YEAR TO MONTH

Indicates an interval of 3 months

ORACLE

Copyright © 2006, Oracle. All rights reserved.

INTERVAL YEAR TO MONTH. Example

CREATE TABLE warranty
(prod id number, warranty time INTERVAL YEAR(3)

TO MONTH) ;

INSERT INTO warranty VALUES (123, INTERVAL '8’
MONTH) ;

INSERT INTO warranty VALUES (155, INTERVAL '200°
YEAR (3)) ;

INSERT INTO warranty VALUES (678, '200-11"');
SELECT * FROM warranty;

PROD_ID WARRANTY _TIME
123 +100-03
155 +200-00
B78 +200-11

ORACLE

Copyright © 2006, Oracle. All rights reserved.

INTERVAL DAY TO SECOND Data Type

INTERVAL DAY TO SECOND
(fractional seconds precision)stores a period
of time in days, hours, minutes, and seconds.

INTERVAL DAY [(day precision)] TO Second

For example:

INTERVAL '6 03:30:16' DAY TO SECOND

Indicates an interval of 6 days 3 hours 30 minutes
and 16 seconds

INTERVAL '6 00:00:00' DAY TO SECOND

Indicates an interval of 6 days and 0 hours, O
minutes and 0 seconds

ORACLE

Copyright © 2006, Oracle. All rights reserved.

INTERVAL DAY TO SECOND
Data Type: Example

CREATE TABLE lab
(exp id number, test time INTERVAL DAY (2) TO

SECOND) ;
INSERT INTO lab VALUES (100012, 'S0 00:00:00"');
INSERT INTO lab VALUES (56098,

INTERVAL '6 03:30:16' DAY TO SECOND) ;

SELECT * FROM lab;

EXP_ID TEST_TIME
100012 +30 00:00:00.000000
56055 B 03:30:16.000000

ORACLE

Copyright © 2006, Oracle. All rights reserved.

EXTRACT

 Display the YEAR component from the SYSDATE.

SELECTlEXTRACT (YEAR FROM SYSDATE) |FROM DUAL;

| EXTRACT(YEARFROMSYSDATE)
| 2001

* Display the MONTH component from the HIRE DATE
for those employees whose MANAGER ID is 100.

SELECT last name, hire date, B
EXTRACT (MONTH FROM HIRE=DATE)

FROM employees
WHERE manager id = 100;

| LAST_NAME | HIRE_DATE | EXTRACT(MONTHFROMHIRE_DATE)

ochhar 21-5EP-82 | g
D Haan 13-JAN-93 |

IMourgos [1B-NOY-99 | 11
Zlatkey [29-JAN-00 |

Hartstein 117-FEB-96 | 2

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TZ OFFSET

 Display the time zone offset for the 'us/Eastern’
time zone:

SELECT TZ OFFSET('US/Eastern') FROM DUAL;

| TZ_OFFS
-04:00

 Display the time zone offset for the 'canada/yukon'!
time zone:

SELECT TZ OFFSET ('Canada/Yukon') FROM DUAL;

| TZ_OFFS
H07:00

 Display the time zone offset for the
'Europe/London' time zone:

SELECT TZ OFFSET ('Europe/London') FROM DUAL;

| TZ_OFFS
+01:00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

TIMESTAMP Conversion Using FROM TZ

 Display the TIMESTAMP value '2000-03-28 08:00:00"
as a TIMESTAMP WITH TIME ZONE value.
SELECT FROM TZ (TIMESTAMP

12000-03-28 08:00:00','3:00")

FROM DUAL;
| FROM_TZ(TIMESTAMP 2000-03-2808:00:00",'3:00)

|28-MAR-IIIEI 02.00.00.000000000 Ak +H13:00
 Display the TIMESTAMP value '2000-03-28 08:00:00"
as a TIMESTAMP WITH TIME ZONE value for the
'Australia/North' time zone region.

SELECT FROM TZ (TIMESTAMP
12000-03-28 08:00:00', 'Australia/North')

FROM DUAL;

| FROM_TZA(TIMESTAMP 200003 -2808:00:00°, AUSTRALIANORTH’)
|28-MAR-DD 03.00.00. 000000000 Ak AUSTRALIAMNORTH

ORACLE
Copyright © 2006, Oracle. All rights reserved.

Converting to TIMESTAMP Using
TO TIMESTAMP and TO TIMESTAMP TZ

 Display the character string '2000-12-01 11:00:00"
as a TIMESTAMP value:

SELECT TO TIMESTAMP ('2000-12-01 11:00:00',
'"YYYY-MM-DD HH:MI:SS')

FROM DUAL;

| TO_TIMESTAMP ("2000-12-0111:00:00°, YYYY-MM-DDHH: MI: 557
|EI1 -DEC-00 11.00.00.000000000 Ak

 Display the character string '1999-12-01 11:00:00 -
8:00' aS a TIMESTAMP WITH TIME ZONE value:
SELECT
TO TIMESTAMP TZ('1999-12-01 11:00:00 -8:00',
'YYYY-MM-DD HH:MI:SS TZH:TZM')

FROM DUAL;

| TO_TIMESTAMP_TZ{"1999-120111:00:00-8:00°,%YYY-MM-DDHH:MI:SSTZH: TZM") ‘

|EI1-DEC-99 11.00.00.000000000 A -O05:00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Time Interval Conversion with
TO YMINTERVAL

Display a date that is one year and two months after

the hire date for the employees working in the
department with the DEPARTMENT ID 20.

SELECT hire date,
hire date + TO YMINTERVAL('01-02') AS
HIRE DATE YMININTERVAL

FROM employees

WHERE department id = 20;

| HIRE_DATE | HIRE_DATE_YMININTERV
|17-FEB-1596 00:00:00 17-APR-1997 00:00:00
17-AUG-1957 00:00:00 117-0CT-1958 00:00:00

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using TO DSINTERVAL:

TO DSINTERVAL: Converts a character string to an

INTERVAL DAY TO SECOND data type

Example

SELECT last name,

TO CHAR (hire date +
TO DSINTERVAL('100 10:00:00"'),
'mm-dd-yy:hh:mi:ss') hiredate2
FROM employees;

TO CHAR (hire date, 'mm-dd-yy:hh:mi:ss') hire date,

LAST HAME HIRE_DATE
king O=-17-287:12:00:00
Kochhar 09-21-89:12:00:00
De Haan 01-13-93:12:00:00
Hunold 01-03-90:12:00:00
Ernst 05-21-91:12:00:00
Austin OB-25-97.12:00:00
Fataballa 02-05-95:12:00:00
Lorentz 02-07-99:122:00:00
Sreenberg 03-17-94:12:00:00
Fawviet 08-165-94:12:00:00

ORACLE

HIREDATE2?

09-25-57:10:00:00
12-30-29:10:00:00
04-23-93:10:00:00
O4-13-90:10:00:00
05-29-91:10:00:00
10-03-97:10:00:00
05-16-98:10:00:00
05-13-99:10:00:00
11-25-94:10:00:00
11-24-94:10:00:00

Copyright © 2006, Oracle. All rights reserved.

Daylight Saving Time

 First Sunday in April
— Time jumps from 01:59:59 a.m. to 03:00:00 a.m.

— Values from 02:00:00 a.m. to 02:59:59 a.m. are not
valid.

 Last Sunday in October
— Time jumps from 02:00:00 a.m. to 01:00:01 a.m.

— Values from 01:00:01 a.m. to 02:00:00 a.m. are
ambiguous because they are visited twice.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the
following functions:

e TZ OFFSET * CURRENT DATE
 FROM TZ e CURRENT TIMESTAMP
e TO TIMESTAMP LOCALTIMESTAMP
e TO TIMESTAMP TZ <+ DBTIMEZONE
 TO YMINTERVAL SESSIONTIMEZONE

e EXTRACT

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 5: Overview

This practice covers using the datetime functions.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Retrieving Data Using Subqueries

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

 Write a multiple-column subquery
« Use scalar subqueries in SQL
« Solve problems with correlated subqueries

« Update and delete rows using correlated
subqueries

e Usethe EXISTS and NOT EXISTS operators
« Usethe WITH clause

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Multiple-Column Subqueries

Main query “
WHERE (MANAGER_ID, DEPARTMENT _ID) IN

Subquery
100 90
102 60
124 50

Each row of the main query is compared to values
from a multiple-row and multiple-column subquery.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Column Comparisons

Multiple-column comparisons involving subqueries
can be:

 Nonpairwise comparisons
e Pairwise comparisons

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Pairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager and work in the same
department as employees with the first name of
“John.”

SELECT employee id, manager id, department id

FROM employees

WHERE (manager id, department id) IN

(SELECT manager id, department id
FROM employees

WHERE first name = 'John')

AND first name <> 'John’';

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Nonpairwise Comparison Subquery

Display the details of the employees who are managed
by the same manager as the employees with the first
name of “John” and work in the same department as
the employees with the first name of “John.”

SELECT employee id, manager id, department id
FROM employees

WHERE manager id IN

(SELECT manager id

FROM employees

WHERE first name = 'John')
AND department id IN

(SELECT department id

FROM employees

WHERE first name = 'John')

AND first name <> 'John';

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Scalar Subquery Expressions

« A scalar subquery expression is a subquery that
returns exactly one column value from one row.

 Scalar subqueries can be used In:
— Condition and expression part of DECODE and CASE
— All clauses of SELECT except GROUP BY

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Scalar Subqueries: Examples

e Scalar subqueries in CASE expressions:

SELECT employee id, last name,
(CASE 20
WHEN department id =< |
(SELECT department id
FROM departments
WHERE location id = 1800)
THEN 'Canada' ELSE 'USA' END) location

FROM employees;

e« Scalar subqueries in the ORDER BY clause:

SELECT employee id, last name

FROM employees e

ORDER BY | (SELECT department name

FROM departments d

WHERE e.department id = d.department id);

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Correlated Subqueries

Correlated subqueries are used for row-by-row
processing. Each subquery is executed once for every
row of the outer query.

GET
candidate row from outer query

1

EXECUTE
inner query using candidate row value

1

USE
values from inner query to qualify or
disqualify candidate row

ORACLE

Copyright © 2006, Oracle. All rights reserved.

—

Correlated Subqueries

The subquery references a column from a table in the
parent query.

SELECT columnl, column2,
FROM tablel outer
WHERE columnl operator

(SELECT columnl, column2

FROM table2

WHERE exprl =
outer.|expr2) ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Correlated Subqueries

Find all employees who earn more than the average
salary in their department.

SELECT last name, salary, department id
FROM employees outer
WHERE salary >

| (SELECT AVG(salary)
FROM employees

WHERE department id
outer.department id) ;

Each time a row from
the outer query

IS processed, the
inner query is
evaluated.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Correlated Subqueries

Display details of those employees who have changed
jobs at least twice.

SELECT e.employee id, last name,e.job id
FROM employees e
WHERE 2 <= (SELECT COUNT (*)
FROM job history
WHERE employee id = e.employee id) ;

EMPLOYEE_ID LAST NAME JOB ID
101 Kochhar AD WP
176 Taylor =4 HEF
200 Whalen AD ASET

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using the EXISTS Operator

e The EXISTS operator tests for existence of rows in
the results set of the subquery.

 If asubquery row value is found.:

— The search does not continue in the inner query
— The condition is flagged TRUE

« If asubquery row value is not found:
— The condition is flagged FALSE

— The search continues in the inner query

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Find Employees Who Have At Least One
Person Reporting to Them

SELECT employee id, last name, job id, department id
FROM employees outer
WHERE | EXISTS |(SELECT 'X!
FROM employees
WHERE manager id =
outer.employee id);

EMPLOYEE_ID LAST HAME JOB_ID DEPARTMENT_ID
100 King A0 _FPRES Q0
101 Kochhar A0 R 20
102 De Haan A0 WF a0
1053 Hunold IT_PROGE B0
105 Sreenberg FI_MER 100
114 Raphaely P RS =0
120 “Weiss ST kAR 50
121 Fripp ST kAR S0
122 Kaufling ST kelsd S0
123 “allman ST ksl S0
124 kMourgos ST kALp 50
145 Russell sS4 kLA 20
145 FPartners S8 elA =0
147 Errazuriz S8 el =0
1458 Cambrault SA AR 30
149 Llotkey SA AR 30
201 Hartstein Pl b Pl 20
205 | Higgins AC MGER 110

18 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Find All Departments That Do Not Have
Any Employees

SELECT department id, department name

FROM departments d
WHERE | NOT EXISTS iSELECT X!
FROM employees
WHERE department id = d.department id);

DEPARTMENT _ID DEPARTMENT _NAME
120 Treasury
130 Corporate Tax
140 Caontrol And Credit
150 Shareholder Services
160 Benefits
170 Manufacturing

260 Recruiting
270 Payrall

16 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Correlated UPDATE

Use a correlated subquery to update rows in one table
based on rows from another table.

UPDATE tablel aliasl
SET column = (SELECT expression
FROM table2 alias2
WHERE aliasl.column =
alias2.column) ;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Correlated UPDATE

« Denormalize the EMPL6 table by adding a column
to store the department name.

 Populate the table by using a correlated update.

ALTER TABLE empl6
ADD (department name VARCHAR2 (25));

UPDATE empl6 e
SET department name =
(SELECT department name
FROM departments d
WHERE e.department id = d.department id);

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Correlated DELETE

Use a correlated subquery to delete rows in one table
based on rows from another table.

DELETE FROM tablel aliasl
WHERE column operator
(SELECT expression
FROM table2 alias2
WHERE aliasl.column = alias2.column);

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Correlated DELETE

Use a correlated subquery to delete only those rows
from the EMPL6 table that also exist in the

EMP HISTORY table.

DELETE FROM empl6 E
WHERE employee id =
(SELECT employee id
FROM emp history
WHERE employee id = E.employee id);

ORACLE

Copyright © 2006, Oracle. All rights reserved.

WITH Clause

 Using the WITH clause, you can use the same
guery block in a SELECT statement when it occurs

more than once within a complex query.

« The WITH clause retrieves the results of a query
block and stores it in the user’s temporary
tablespace.

e The wITH clause improves performance.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

WITH Clause: Example

Using the WITH clause, write a query to display the
department name and total salaries for those
departments whose total salary is greater than the
average salary across departments.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

WITH Clause: Example

WITH
dept costs| AS (
SELECT d.department name, SUM(e.salary) AS dept total
FROM employees e JOIN departments d

ON e.department id = d.department id
GROUP BY d.department name),
avg cost AS (

SELECT SUM(dept total) /COUNT(*) AS dept avg
FROM dept costs
SELECT *
FROM |[dept costs
WHERE dept total >
(SELECT dept avg
FROM| avg cost)
ORDER BY department name;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:

A multiple-column subquery returns more than
one column

 Multiple-column comparisons can be pairwise or
nonpairwise

A multiple-column subquery can also be used in
the FROM clause of a SELECT statement

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

 Correlated subqueries are useful whenever a
subquery must return a different result for each
candidate row

e The EXISTS operator is a Boolean operator that
tests the presence of a value

« Correlated subqueries can be used with SELECT,
UPDATE, and DELETE Statements

e You can use the WITH clause to use the same
guery block in a SELECT statement when it occurs

more than once

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
« Creating multiple-column subqueries
« Writing correlated subqueries
e Using the EXISTS operator

 Using scalar subqueries
« Using the WITH clause

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Hierarchical Retrieval

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do
the following:

* Interpret the concept of a hierarchical query
 Create a tree-structured report

« Format hierarchical data

« Exclude branches from the tree structure

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Sample Data from the EMPLOYEES Table

EMPLOYEE_ID
100
1071
102
103
104
105
106
a7
108

EMPLOYEE_ID
196
197
1598
1939
200
201
202
203
204
205
206

107 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

LAST_NAME
King
Kachhar
De Haan
Hunold
Ernst
Austin
Fataballa
Lorentz
Sreenberg

LAST _NAME
Wialsh
Feeney
CCannell
Srant
YWhalen
Hartstein
Fay
Mavris
Baer
Higgins
Gietz

JOB_ID
AD_PRES

AD_ WP

AD_ WP

T PROG
IT_PROG
IT_PROG
IT_PROG

T PROG
FI_MGR

JOB_ID
SH_CLERK
SH_CLERK
SH_CLERK
SH_CLERK
AD_ASST

MK AR
MK_REP
HR_REF
FR_REFP
AC_MGR
AC_ACCOUNT

MANAGER_ID

MANAGER_ID

100
100
102
103
103
103
103
101

124
124
124
124
101
100
201
101
101
101
205

Natural Tree Structure

EMPLOYEE ID = 100 (Parent)
King

MANAGER ID = 100 (Child)

Kochhar De Haan Mourgos Zlotkey Hartstein

Whalen Higgins Hunold Rajs Davies Matos Vargas

| | |

Gietz Ernst Lorentz Abel Taylor Grant

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Hierarchical Queries

SELECT [LEVEL], column, expr...
FROM table

[WHERE condition(s)]

[START WITH condition(s)]
[CONNECT BY PRIOR condition(s)] |;

WHERE condition:

expr comparison operator expr

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Walking the Tree

Starting Point

« Specifies the condition that must be met
 Accepts any valid condition

START WITH columnl = value

Using the EMPLOYEES table, start with the employee
whose last name is Kochhar.

...START WITH last name - 'Kochhar'

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Walking the Tree

CONNECT BY PRIOR columnl = columnZ2

Walk from the top down, using the EMPLOYEES table.

. CONNECT BY PRIOR employee id = manager id

Direction

Top down — Columnl = Parent Key
Column2 = Child Key

Bottom up = Column1 = Child Key
Column2 = Parent Key

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Walking the Tree: From the Bottom Up

SELECT employee id, last name, job id, manager id
FROM employees

START WITH employee id = 101

CONNECT BY PRIOR manager id = employee id

e

EMPLOYEE_ID LAST NAME JOB_ID MANAGER_ID
101 Kachhar AD VP 100
100 King AD_PRES

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Walking the Tree: From the Top Down

SELECT last name||' reports to '||

PRIOR last name "Walk Top Down"

FROM employees

START WITH last name = 'King'

CONNECT BY PRIOR employee id = manager id

e

Walk Top Down
King reparts to
King reparts to
Kochhar reports to King
Sreenbery reports to Kochhar
Faviet reports to Greenberg
Chen reparts to Greenberg

108 rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Ranking Rows with the LEVEL
Pseudocolumn

Level 1
root/parent

King

Kochhar De Haan Mourgos Zlotkey Hartstein

] |] Level 3

Whalen Higgins Hunold Rajs Davies Matos Vargas | [Rarent/child /leaf

| | |

Gietz Ernst Lorentz Abel Taylor Grant
Level 4
leaf

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Formatting Hierarchical Reports Using
LEVEL and LPAD

Create a report displaying company management
levels, beginning with the highest level and indenting
each of the following levels.

COLUMN org chart FORMAT Al2

SELECT LPAD(last=name, LENGTH(last=name)+(LEVEL*2)-2,'=Lj
AS org chart

FROM employees

START WITH first name='Steven' AND last name='King'

CONNECT BY PRIOR employee id=manager id

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Pruning Branches

Use the WHERE clause Use the CONNECT BY clause
to eliminate a node. to eliminate a branch.
WHERE last name != 'Higgins'CONNECT BY PRIOR
employee id = manager id
AND last name != 'Higgins'
Kochhar Kochhar
Whalen NJOUNS Whalen Higgins
Gietz Gietz
ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned that:

« You can use hierarchical queries to view a
hierarchical relationship between rows in a table

 You specify the direction and starting point of the

query
 You can eliminate nodes or branches by pruning

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:

« Distinguishing hierarchical queries from
nonhierarchical queries

« Walking through a tree

* Producing an indented report by using the LEVEL
pseudocolumn

 Pruning the tree structure
« Sorting the output

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Regular Expression Support

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
use regular expression support in SQL to search,

match, and replace strings in terms of regular
expressions.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Reqgular Expression: Overview

A multilingual
regular expression
support for SQL
and PL/SQL string

types

ABC
A method of
describing both Several new
simple and complex functions to
patterns for support regular

searching and
manipulating

ORACLE

Copyright © 2006, Oracle. All rights reserved.

expressions

Meta Characters

Symbol Description
* Matches zero or more occurrences
| Alteration operator for specifying alternative matches
NS Matches the start-of-line/end-of-line
[] Bracket expression for a matching list matching any one of the
expressions represented in the list
{m} Matches exactly m times
{m,n} Matches at least m times but no more than n times
[] Specifies a character class and matches any character in that class
\ Can have 4 different meanings: 1. Stand for itself. 2. Quote the next
character. 3. Introduce an operator. 4. Do nothing.
Matches one or more occurrences
? Matches zero or one occurrence
: Matches any character in the supported character set, except NULL
0 Grouping expression, treated as a single subexpression
[== Specifies equivalence classes
\n Back-reference expression

[..]

Specifies one collation element, such as a multicharacter element

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Meta Characters

Problem: Find 'abc' within a string:
Solution: 'abc'l <::>

Matches: abc
Does not match: 'def'

Problem: To find 'a' followed by any character, followed

by 'c!

Meta Character: any character is defined by '.'

Solution: 'a.c' (::)
Matches: abc

Matches: adc

Matches: alc

Matches: a&c

Does not match: abb

Problem: To find one or more occurrences of 'a'
Meta Character: Use'+' sign to match one or more of the

previous characters

Solution: a+'! <::>
Matches: a

Matches: aa

Does not match: bbb

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Regular Expression Functions

Function Name Description

REGEXP LIKE Similar to the LIKE operator, but performs
regular expression matching instead of
simple pattern matching

REGEXP REPLACE | Searches for a regular expression pattern
and replaces it with a replacement string

REGEXP INSTR Searches for a given string for a regular
expression pattern and returns the
position where the match is found

REGEXP SUBSTR | Searches for aregular expression pattern
within a given string and returns the
matched substring

ORACLE

Copyright © 2006, Oracle. All rights reserved.

REGEXP Function Syntax

REGEXP LIKE (srcstr, pattern [,match option])

REGEXP INSTR (srcstr, pattern [, position [, occurrence
[, return option [, match optionl]lll])

REGEXP SUBSTR (srcstr, pattern [, position
[, occurrence [, match option]l]])

REGEXP REPLACE (srcstr, pattern [,replacestr [, position
[, occurrence [, match option]]ll])

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Performing Basic Searches

SELECT first name, last name

FROM employees

WHERE REGEXP LIKE (first name, '”“Ste(v|ph)en$');

FIRST HAME LAST HAME
steven King
steven Farkle
=tephen =tiles

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Checking the Presence of a Pattern

SELECT street address,

REGEXP INSTR (street address,'["[:alpha:]]1"'")
FROM locations
WHERE

REGEXP INSTR (street address,'[”"[:alpha:]]')> 1;

STREET_ADDRESS REGEXP_INSTR{STREET _ADDRESS,T*[:ALPHA:]])
Magdalen Centre, The Oxford Science Park S
Schwanthalerstr, F031 16
Fua Frei Caneca 1360 4
hMurtenstrasse 921 14
Fieter Breughelstraat 537 !
Mariano Escobedo 99591 g8

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Example of Extracting Substrings

SELECT REGEXP SUBSTR(street address , ' [T 1+ ')
"Road" FROM locations;

Hoad
“ia
Calle

Jabberwocky
Interiars
fagoara
Charade

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Replacing Patterns

SELECT REGEXP REPLACE(country name, '(.)',

'\1 1) “REGEXP_REPLACE“
FROM countries;

REGEXP_REPLACE
Argentina
Australia
BEelgium
BErazil
Canada

Switzerland
China

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Regular Expressions and
Check Constraints

ALTER TABLE emp8
ADD CONSTRAINT email addr @

CHECK (REGEXP_ LIKE (email, '@'))NOVALIDATE ;

(500, 'Christian', 'Patel’',
'ChrisP2creme.com', 1234567890,
'12-Jan-2004', 'HR REP', 2000, null, 102, 40) ;

INSERT INTO emp8 VALUES

INSERT INTO empd WALUES

W

ERROR atline 1
ORA-02290: check constraint (ORAZO EMAIL_ADDR) wiolated

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use

regular expression support in SQL and PL/SQL to
search, match, and replace strings in terms of regular

expressions.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Practice 8: Overview

This practice covers using regular expressions.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Writing Advanced Scripts

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:
« Describe the type of problems that are solved by
using SQL to generate SQL
 Write a script that generates a script of DROP
TABLE Statements
e Write a script that generates a script of INSERT
INTO statements

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using SOQL to Generate SQL

e SQL can be used to generate scripts in SQL.

« The data dictionary:

— Is a collection of tables and views that contain
database information

— Is created and maintained by the Oracle server

SQL Data dictionary

SQL script

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating a Basic Script

SELECT 'CREATE TABLE ' || table name ||
' test ' || 'AS SELECT * FROM '
|| table name ||' WHERE 1=2;'
AS "Create Table Script"

FROM user tables;

| Create Tahle Script

|CREATE TABLE COUNTRIES test AS SELECT * FROM COUNTRIES WHERE 1=2,
|CREATE TABLE DEPARTMENTS test AS SELECT * FROM DEPARTMENTS WHERE 1=2;
ICREATE TABLE EMPLOYEES_test AS SELECT * FROM EMPLOYEES WHERE 1=2;
|CREATE TABLE JOBS test AS SELECT * FROM JOBS WHERE 1=2;

|CREATE TABLE JOB_GRADES _test AS SELECT * FROM JOB_GRADES WHERE 1=2;
|CREATE TABLE JOB_HISTORY _test AS SELECT * FROM JOB_HISTORY WHERE 1=2;
ICREATE TABLE LOCATIONS test AS SELECT * FROM LOCATIONS WHERE 1=2;
|CREATE TABLE REGIONS_test AS SELECT * FROM REGIONS WHERE 1=2;

B rows selected.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Controlling the Environment

SET ECHO OFF

SET FEEDBACK OFF Set system variables
—

SET PAGESIZE 0 to appropriate values.

SQL STATEMENT

SET FEEDBACK ON
SET PAGESIZE 24 Set system variables
SET ECHO ON back to the default
value.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE O

SELECT 'DROP TABLE ' || object name || ';'
FROM user objects

WHERE object type = 'TABLE'

/

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Dumping the Contents of a Table to a File

SET HEADING OFF ECHO OFF FEEDBACK OFF
SET PAGESIZE O

SELECT
'INSERT INTO departments test VALUES
(' || department id || ', ''' || department name ||
t11, '11 || location id || ''');'

AS "Insert Statements Script"
FROM departments

/

SET PAGESIZE 24
SET HEADING ON ECHO ON FEEDBACK ON

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Dumping the Contents of a Table to a File

Source Result

IIIXIII IXI

1111 | |department name| |'''' |'Administration'

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Generating a Dynamic Predicate

COLUMN my col NEW VALUE dyn where clause

SELECT DECODE ('&&deptno', null,

DECODE ('&&hiredate', null, ' ',

'WHERE hire date=TO DATE('''||'&&hiredate'',''DD-MON-YYYY'')"'),
DECODE ('&&hiredate', null,

'WHERE department id = ' || '&&deptno',

'WHERE department id = ' || '&&deptno' ||

' AND hire date = TO DATE('''||'&&hiredate'',''DD-MON-YYYY'')'))

AS my col FROM dual;

SELECT last name FROM employees &dyn where clause;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this appendix, you should have learned that:

 You can write a SQL script to generate another
SQL script

« Script files often use the data dictionary
 You can capture the output in a file

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Oracle Architectural Components

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to
do the following:

e Describe the Oracle server architecture and its
main components

e List the structures involved in connecting a user
to an Oracle instance
 Listthe stages in processing:
— Queries
— Data manipulation language (DML) statements
— Commits

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Oracle Database Architecture: Overview

The Oracle database consists of two main
components:

« The database or the physical structures
« Theinstance or the memory structures

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Database Physical Architecture

Control files

Data files Online redo log files

Parameter file Password file Archive log files
ORACLE

Copyright © 2006, Oracle. All rights reserved.

Control Files

« Contain physical database structure information
 Should be multiplexed to protect against loss
« Areread at mount stage

Control files

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Redo Log Files

« Record changes to the database
 Should be multiplexed to protect against loss

Redo log
buffer
|

Log
Writer
LGWR

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Tablespaces and Data Files

« Tablespaces consist of one or more data files.
« Data files belong to only one tablespace.

USERS tablespace

ORACLE
Copyright © 2006, Oracle. All rights reserved.

Segments, Extents, and Blocks

Segments exist within a tablespace.
Segments consist of a collection of extents.
Extents are a collection of data blocks.
Data blocks are mapped to OS blocks.

r ¢ 4 4 4

Segment Extents Data OS
blocks blocks

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Oracle Instance Management

-~

~

\,

J

SGA
() ™)
Streams pool Large pool
. J J
(N N\
Database Redo log
buffer cache buffer

v

A4

System Process Database Log
monitor monitor writer writer
SMON PMON DBWO LGWR
Check — :
point Archiver
CKPT < ARCO
ORACLE

Copyright © 2006, Oracle. All rights reserved.

Oracle Memory Structures

Server Server Back-
process |[+«*| PGA process |[+«*| PGA ground |+«*| PGA
1 2 process
SGA

-

~

é))
Streams pool Large pool
. J J
4 N N
Database Redo log
buffer cache buffer
\ J J

J

Copyright © 2006, Oracle. All rights reserved.

ORACLE

Oracle Processes

Server Server Server Server
process process process process
System Global Area
(SGA)

System || Process | |Database|| Check Log :

.)) ; . Archiver
monitor || monitor writer point writer S
SMON PMON DBWO CKPT LGWR

Background processes

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Other Key Physical Structures

‘/ - - “\x\\
N i .

Database

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Processing a SQL Statement

« Connect to an instance using:
— The user process
— The server process
e The Oracle server components that are used
depend on the type of SQL statement:
— Queries return rows.

— Data manipulation language (DML) statements log
changes.

— Commit ensures transaction recovery.

« Some Oracle server components do not
participate in SQL statement processing.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Connecting to an Instance

Oracle server

Client
Application server Server
Browser

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Processing a Query

« Parse:
— Search for identical statement.
— Check syntax, object names, and privileges.
— Lock objects used during parse.
— Create and store execution plan.
 Execute: Identify rows selected.

« Fetch: Return rows to user process.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Shared Pool

« Thelibrary cache contains the SQL statement text,
parsed code, and execution plan.

« The data dictionary cache contains table, column,
and other object definitions and privileges.

 The shared pool is sized by SHARED POOL SIZE.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Database Buffer Cache

|t stores the most recently used blocks.
 The size of a buffer is based on DB BLOCK_SIZE.

e The number of buffers is defined by
DB BLOCK BUFFERS.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Program Global Area (PGA)

 |Is not shared
 Is writable only by the server process
« Contains:

— Sort area

— Session information

— Cursor state

— Stack space

Server
process

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Processing a DML Statement

®

UPDATE

employees ...

&)
®

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Redo Log Buffer

* Has its size defined by LOG_BUFFER

« Records changes made through the instance
 Is used sequentially

e Is acircular buffer

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Rollback Segment

Old image

Rollback segment _
New image

Table

DML statement

ORACLE
Copyright © 2006, Oracle. All rights reserved.

COMMIT Processing
g
®
®

@

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to:

« Identify database files: data files, control files, and
online redo logs

« Describe SGA memory structures: DB buffer
cache, shared SQL pool, and redo log buffer

 Explain primary background processes:
DBWO, LGWR, CKPT, PMON, SMON, and ARCO

e List SQL processing steps: parse, execute, and
fetch

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using SQL Developer

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do
the following:

« Listthe key features of Oracle SQL Developer
* Install Oracle SQL Developer

* |dentify menu items of Oracle SQL Developer
 Create a database connection

« Manage database objects

 Use SQL Worksheet

 Execute SQL statements and SQL scripts
 Create and save reports

ORACLE

Copyright © 2006, Oracle. All rights reserved.

What Is Oracle SQL Developer?

 Oracle SQL Developer is a graphical tool that enhances
productivity and simplifies database development

tasks.

 You can connect to any target Oracle database schema
using standard Oracle database authentication.

>

SQL Developer

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Key Features

 Developed in Java

e Supports Windows, Linux, and Mac OS X platforms
« Default connectivity by using the JDBC Thin driver
 Does not require an installer

 Connects to any Oracle Database version 9.2.0.1 and
later

e Bundled with JRE 1.5

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip it into
any directory on your machine.

& C:\sgldeveloper

. File Edit Wiew Favorites Tools Help .'{.
F i 1 =
; @ Back - [lﬁ ,.-'I*"J Search E[jil Folders
- Address |[5) Crisgldeveloper v &0
P—
Folders X .
| =] soldeveloper e s | cr|developer
: . |
[ﬁ ide E 1kE
o & () jdbe
E stracting rt.jar) idev
£ idk l soldeveloper . exe

2 b r_-;sl: | upgrade_guidelines txt
I rdbms N == | TextDocurnent
L4 | * £ | ¥

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Menus for SQL Developer

| ¥ Oracle SOL Developer |:||E|E|
File Edit Eielw Mavigate Run Debuy Source Tools Help
RoEad e[| 5|
LR connections IEPEHEpDrtS l | &
WY %"
-2 Connecfjons 2 4 o
81) ® ©
Editing
ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

e You must have at least one database connection to use
SQL Developer.

e You can create and test connections:
— For multiple databases
— For multiple schemas

 SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

* You can export connections to an XML file.

e Each additional database connection created is listed
In the Connections Navigator hierarchy.

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating a Database Connection

F- Mew f Select Database Connection

Connection Mame | DEConnection Conhection Mame Connection Details
L=etnarme hr
Paszword *x
|:| =ave Pazsword
Role |defaurt =

(Eiasin: |/TNS rﬁdvanced |

Hozthame localhost
Port 154
OF: =

() Service name

Status

Help PEvy Test Connect Cancel
L_tee | | x| /| |

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Browsing Database Objects

Use the Database Navigator to:
 Browse through many objects in a database schema
 Review the definitions of objects at a glance

Dconnections X | aldReports | (]| | B> DBConnection1 | [FHEMPLOVEES |
EJE'] ? Columns lData Ilndexes]Cnnstrair‘rts]Granta lStatiati |
=24 Connections = ’ ,'Zﬁ Eﬁ] Actions...
Ela DBEConnection Column Mame | Data Type
=i Tables EMPLOYEE_ID MUMEER(E,O)
-3 COUNTRIES o FIRST MAME WARCHARZI20 Bytes)
+- 5 DEPARTMENTS g
- DEPENDENTS LAST_MAME VARCHARZ(25 Bytes)
- DEPENDENTS? EMAIL VARCHARZ(25 Bytes)
5 R || PHOME_MUMEER WARCHAR220 Bytes)
& JOB_HISTORY HIRE_DaTE D&TE
- JoBs JOB_ID VARCHARZ(10 Bytes)
- LocaTioNs SaLARY MUMBER(S, 2
- REGIONS
[P views COMMISSION_P... MUMBER(2,2)
[l indexes | MANAGER_D MNUMEER(S,0) |
[Pk L L+]

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating a Schema Object

 SQL Developer supports the creation of any schema
object by:
— Executing a SQL statement in SQL Worksheet
— Using the context menu

 Edit the objects using an edit dialog box or one of
many context-sensitive menus.

 View the DDL for adjustments such as creating a new
object or editing an existing schema object.

iﬁl Connections
=8 DEConnection

£ Ta

ez || B Create TABLE
W Apply Fitter ..
EE Refresh

=

BEBEA

[
[
E..
[
H
[

| B . ol i |

Help

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Creating a New Table: Example

€ Create Table |5J
Schema: [HR o | Showe Sodvanced Options
Mame: | DEPENDENTS |
Type: (@) Morral () External () Index Organized () Temporary Table

Starage Options rPanrtiDning rSuhpart'rtiu:un Templates |/F‘art'rti|:|n Defintions rDDL |
Columns r Pritnary Key r Unigue Constraints r Foreign Keys r Check Constraints r Indexes |

Columns: Column Properties
Y
o - Name: |RELATIVEID |
FIRST_MAKE
LAST_MAKE Datatype: (2 Sirple () Complesx
BIRTHDATE
T Type: | NUMBER ~|
ZENDER: = o |E |
RELATIWE_ID =1 s
Scale:; | ‘
Defautt: | |
[] cannat be NULL
Cornment;

Y
-

L i Ok Li [Cancel]

ORACLE
Copyright © 2006, Oracle. All rights reserved.

Using SQL Worksheet

 Use SQL Worksheet to enter and execute SQL, PL/SQL,
and SQL*Plus statements.

 Specify any actions that can be processed by the
database connection associated with the worksheet.

Fun Debug Source

R
@Help [DBConne Preferences... |E
L" % % ﬂ '@' @ Sxport DEConnection "'|
Etor 5 Statemort 2 Sl Warkshest

er erment;

il
-
4| 3

E-:Hesurta " & scriot output | BExpiain | @oEms output | @ows o...|
Results:

il
-

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using SQL Worksheet

06

@ & EI DEConnectionl = |

Eiuter =L S‘llatement =
Ds® O

| 1

[Resutts || (& scriet Output | EExplain | EADEMS Outout | @ owia Output |
Results:

-
—

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or
multiple SQL statements.

D- DEConnectiont] I:

k El E% ﬂ; 'E:i' {E 'E é’ 0.01E seconds |DEFC|:|r'|ne-:til

Enter SGL Statement:

SELECT last name, salary FROM employees =
WHERE salary > 10000

SELECT last name "Name™, salary*l:s "anmmal 3alary™
FROM ewmployees:

a] | »]
e, W
[Resutts | & Script Output | T)Eplain | EDEMS Output | @ o, Output
Results:

LAST_MAME | SALARY

1 Hartstein 13000 -

2 Higaina 12000 =

3 King 24000 =
—

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Viewing the Execution Plan

D- DEConnection l E]
> E[@ ﬂ» ﬂ @ E é’ DBECaonnectiont ']

Enter SGL Statement:

SELECT employee_id, last name, job_id, salary]
FROM enplovees
YHEBRE =zalary »>= 10000;

x D
B> Resuts | [script outout | EExmaiiy @oems output | @) ovwa Output
Operation Optitnizer Cost Cardinality Bytes
== SELECT STATEMEMT ALL_ROWS 3 7 1
e D TABLE ACCESS(FULL) HR EMPLOYEES AMALY ZED 3 il 1

y i 0|

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Formatting the SQL Code

select last name, salary from employees [+]
where salary <= 3000;
D‘ Execute Statement Fo
E Execute Explain Plan FEi
El Run Script F5
<] (=3 Open File Ctrl-0
= EH saverFie Ctrl-5
P Results ||E|Sc:ript Output ||EExp|air B, print File I
= W= & Clear Ctrl-D
&
&l soL History Fa
&b cut Ctrl-
Copy Ctrl-C
Paste Cirl-
Select All Ctrl-A
E Format Scl...

SELECT lazt name, o
salary i

FROM employees

THEBE =zalary <<= 3000;

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax or

examples File Eciit m Mavigate Run Debuy Source Tools Help
E = E Options b

7Y [EF_EQTI Connections Cirl+ Shift-0
Eii ? Log Ctri+Shift-L

zladdius E

Debugger b
E Fun Manager
v Siatusz Bar

Toalbars b

0

Feport= !

(-4 Cor

NEIE

Edititg

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using Snippets: Example

-

[DECaonnection? :l:] v || &) Snippets (=]
B & B & G 9 & |E Character Functions -
Erter SGL Statement:
SELECT COMNCAT (charl, charZ) i
-
4 | |+
.
D-DEFCDnnectiDn*l] |E| ElSnippets | [;]
[EI ﬁ,& a L] (ﬁ[E & |DE;|:|:|r|nE;|3-t Character Functions =
Erter SGL Statement: CHR(n) =
SELECT CONCAT(first name, lazt name) =
- - || IMITCAPchar)
FROM emplovees: -
] LOWWER char)
4 L »] LPAD{expr , n, expr21 ||

B> Resuts | [script output | TExpisin | @0ems outout | @)

LTRIM(char, zet)
MLS _IMITCAPChar, "™L

Operation ORUMIZE | 5 | OWERGchar, NLY—

...... - = n el
4| s | 0 3 d

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Using SQL*Plus

 SQL Worksheet does not support all SQL*Plus
statements.

 You can invoke the SQL*Plus command-line interface
from SQL Developer.

' Oracle 5QL Developer M[=]
File Edit Yiew HNavigate Eun Debug Source oolz
Godg -0 - SQLPIS 3
R Conne. .. apa (=] | [DBConnectiond L Ereferences. . ﬂ
Export
mY P ECQ o/Tew
S orkzhe -
2} sl worksheet
=2 Connections Erter SGL Statement:
Ean DEConnection S
-
4 | [
DEConnection] | Eiting

ORACLE

Copyright © 2006, Oracle. All rights reserved.

SQL Developer provides a number of predefined reports

Database Reporting

about the database and its objects.

%CDnnectiDns]ﬂﬁepnr‘rs] [:] iConnectiond ISearch Source Code uJ t|
ED Reports - [= |DEFC|:|nnec:ti|:|n1 "’l
EH:I Drata Dictionary Reports .
L:JD Ahout Your Databese COrviier | PLIZGL Ohbject Mame Type
279 ersion Barner HR ADD_JOB_HISTORY PROCEDURE =
.38 National Language Suppd | |HR ADD_JOB_HISTORY FROCEDURE [
G1- [0 Database Administration HR ADD_JOB_HISTORY PROCEDURE
E}"g Tahle HE ADD_JOE_HISTORY PROCEDURE
=0 PLsEL :
g _ “4 HR ADD_JOB_HISTORY PROCEDURE
o al® Program Unit Arguimerts
HR ADD_JOB_HISTORY PROCEDURE
HR ADD_JOB_HISTORY PROCEDURE
£ HR ADD_JOB_HISTORY PROCEDURE
e[semL HR ADD_JOB_HISTORY PROCEDURE
- Jobs — |HR ADD_JOE_HISTORY PROCEDURE
e (3 Streams HR ADD_JOB_HISTORY PROCEDURE
-0 Al Objects = - =

zladdius E

Feport Execution Time: 282ms

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Editinig

Creating a User Defined Report

Create and save User Defined reports for repeated use.

ED Reports ,f > E |DEFC|:|nnectin:|n1 >
EH:I Data Dictionary Repaort | |—
F Create Report Dialog -] About Your Detal) | EMPLOYEE D | FIRST NAME | LAST NAME
D Databaze Adminis 201 Michazel Hart=tein :
*hlame lemp_sal | |:I Table 204 Hermant Baer
'"D PLIZGL 205 Shelley Higgins
Description kmplnyees weith salary==10000 | g Security Py E— King
- [L
ToolTi H 101 Meena Kochhar
" | | |—:| Jobs |
SELECT employee id, last name, ji* |“_‘| Streams 102 Lex De Haan
FROM employees |:I &l Ohjects 108 Mancy isreenbery
YHERE szalarsy »>= 10000; |:I Data Dictionary 114 Cen Faphagly
E}r__I Lls_er Cefined Reports 145 Johin Ruzzel
b fig |
Help | | , Apply | | Cancel 4 M 146 Karen Partners ht
{ s | [ella] P IT+]

ORACLE

Copyright © 2006, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:

 Browse, create, and edit database objects
 Execute SQL statements and scripts in SQL Worksheet
 Create and save custom reports

ORACLE

Copyright © 2006, Oracle. All rights reserved.

	Cover
	Introduction
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4
	Lesson 5
	Lesson 6
	Lesson 7
	Lesson 8
	Appendix C
	Appendix D
	Appendix E

